files/news/1/bild.jpg§§§5000§ § §

files/news/5/bild.jpg§template.cgi?page=artikel_detail&id=1976&lang=de§§5000§Mobiles UCI-Härteprüfgerät§alphaDUR mini§für die schnelle und einfache Härteprüfung

files/news/3/bild.jpg§template.cgi?page=artikel_detail&id=1981&lang=de§§5000§Mobiles Rückprall-Härteprüfgerät§dynaROCK II§für die schnelle und einfache Messung

files/news/2/bild.jpg§template.cgi?page=artikel_detail&id=2001&lang=de§§5000§Vollautomatische Härteprüfung§ROCKWELLmodul§für die normgerechte Prüfung in der Produktion

files/news/6/bild.jpg§template.cgi?page=artikel_detail&id=2000&lang=de§§5000§Vollautomatischer UCI-Härtescanner§UT 200§für hochaufgelöste Härteverteilungen

files/news/7/bild.jpg§template.cgi?page=artikel_detail&id=1726&lang=de§§5000§Universelles Härteprüfgerät§alphaDUR II§für Rückprall- und UCI-Messungen

files/news/18/bild.jpg§https://www.baq.de/template.cgi?page=artikel_liste&rubrik=33&lang=de§§5000§Verschiedene Sonden zur§UCI Härteprüfung§

files/news/16/bild.jpg§https://www.baq.de/template.cgi?page=artikel_liste&rubrik=4&lang=de§§5000§Rockwell, Vickers, Brinell§Härtevergleichsplatten§Made in Germany

files/news/9/bild.jpg§template.cgi?page=artikel_detail&id=1979&lang=de§§5000§Durometer zur Härteprüfung von Kunststoffen§SHOREdigital§Shore A und D

files/news/10/bild.jpg§template.cgi?page=artikel_detail&id=1996&lang=de§§5000§Kalottenschleifgeräte der Serie§kaloMAX§zur Schichtdicken- und Verschleißprüfung

files/news/17/bild.jpg§template.cgi?page=artikel_detail&id=2030&lang=de§§5000§Scratch Tester§easySCRATCH§Kosteneffiziente Prüfung der Haftfestigkeit


 
 
 

Infos über Messverfahren

Härteprüfung:

Das UCI-Verfahren
Das Rückprallverfahren (Leeb)
Das Ultraschall-Rückstreu-Verfahren

Schichtprüfung:

Schichtdickenmessung mit dem Kalottenschliffverfahren (Calotest)




Härteprüfung - Das UCI-Verfahren

Das UCI-Verfahren (Ultrasonic Contact Impedance) wird seit vielen Jahren erfolgreich in der Härteprüfung eingesetzt. Die Sonden des tragbaren Härteprüfgerätes alphaDUR II bzw. alphaDUR mini und des Härtescanners UT200 funktionieren nach diesem Prinzip. Ein Stab wird in Längsrichtung zu Schwingungen angeregt. An einem Ende sitzt ein Vickers-Diamant. Dieser wird in den zu prüfenden Werkstoff gedrückt. Die definierte Last F wird dabei meist über eine Feder aufgebracht. Der Stab schwingt mit seiner Eigenresonanzfrequenz, die im wesentlichen von seiner Länge abhängt. Dringt der Vickers-Diamant in die Probe ein, kommt es zur Dämpfung dieser Schwingung. Damit ist eine Änderung der Resonanzfrequenz verbunden, die leicht gemessen werden kann.



Die Dämpfung des Stabes und damit die zu messende Frequenzänderung hängt von der Größe der Kontaktfläche zwischen Diamant und Probe ab und damit bei fester Prüflast von der Härte der Probe. Das E-Modul des geprüften Werkstoffes beeinflusst die Frequenzänderung ebenfalls.
 Aus der bekannten Prüflast, der gemessenen Frequenzänderung und den gespeicherten Kalibrierwerten zur Berücksichtigung des E-Moduls wird die Härte des Werkstoffes berechnet. Die Vorteile des UCI-Verfahrens liegen in der leichten Automatsierbarkeit und der sehr guten Reproduzierbarkeit der Härtewerte, da die gesamte Kontaktfläche ( prop. d² ) in die Messung eingeht und nicht nur eine Diagonale d oder ein Durchmesser. Die Messung einer Frequenzänderung ist zudem frei vom subjektiven Urteil eines einzelnen Anwenders und sehr schnell durchführbar. Für Kohlenstoffstähle und niedrig legierte Stähle werden Härtevergleichsplatten zur Gerätekalibrierung eingesetzt. Die geringen Schwankungen des E-Moduls innerhalb dieser Werkstoffgruppe sind für das Messergebnis vernachlässigbar.
Zur Bestimmung der benötigten Prüflast einer UCI-Sonde in Abhängigkeit von der Probenhärte und der gewünschten Eindruckdiagonale bzw. Eindringtiefe verwenden Sie bitte das Diagramm Eindringtiefe. Die Schichtdicke (bzw. Einhärtetiefe) sollte das 10fache der Eindringtiefe betragen.
Weitere Informationen zur UCI-Härteprüfung: Anforderungen an die Probenoberfläche, Auswahl einer geeigneten UCI-Sonde, Mindestdicke und Masse der Werkstücke, Durchführung der Messung (PDF-Download).

Härteprüfung – das Rückprallverfahren (Leeb)

Das Rückprallverfahren ist ein dynamisches Härtemessverfahren. Das tragbare Härteprüfgerät dynaROCK II funktioniert nach diesem Prinzip.
Über Federkraft wird ein Schlagkörper (Hartmetallkugel, bei Sonderanwendungen auch Diamantspitze) auf die Werkstückoberfläche geschleudert.
Die Messgröße ist der Geschwindigkeitsverlust zwischen Auf- und Rückprall des Eindringkörpers. Der Geschwindigkeitsverlust steht nach einer Kalibrierung und unter Berücksichtigung der Einflüsse der Masse und Oberflächenbeschaffenheit des Prüflings in direktem Zusammenhang mit der Härte.
Weitere Informationen Informationen zum Leeb- (Rückprall) Härteprüfung: Anforderungen an die Probe (Masse, Wandstärke, Rauheit), Auswahl von geeigneten Schlaggeräten, Messgenauigkeit (PDF-Download)

Das Ultraschall-Rückstreu-Verfahren

Für die Messung der Einhärtetiefe wärmebehandelter Teile ist das Ultraschall-Rückstreu-Verfahren am besten geeignet. Dabei werden Unterschiede in der Kornstruktur zwischen Rand- und Kerngefüge ausgenutzt. Während das gehärtete Gefüge eine sehr feinkörnige Martensitstruktur aufweist, ist im Kerngefüge je nach Vorbehandlung ein gröberes Gefüge vorhanden. Das bedeutet, dass am Übergang zum Kerngefüge infolge der gröberen Kornstruktur eine erhöhte Schallstreuung auftritt.
Es wird mit kurzen Schwingungsimpulsen gearbeitet, deren Frequenz bei 20 MHz liegt, damit bei den vorliegenden Gefügen die Streuung für die Messung ausreicht. Die Schallimpulse werden von der Messelektronik erzeugt und von einem Prüfkopf abgestrahlt. Die zurückgestreute Schallintensität wird vom gleichen Prüfkopf aufgefangen und von der Elektronik ausgewertet.
Damit die Schallwellen in das zu untersuchende Werkstück eindringen können, ist zwischen Prüfkopf und Werkstück ein Medium erforderlich, das die Ultraschallimpulse transportieren kann. Luft ist dafür nicht geeignet. Deshalb werden die Teile im Wasserbad gemessen, dem gegebenenfalls ein Korrosionsschutzmittel zugesetzt ist.
Die Schallwellen breiten sich im Wasser als Longitudinalwellen aus. Treffen sie unter einem bestimmten Winkel auf die Werkstückoberfläche, werden sie in Transversalwellen umgewandelt, die sich in Stahl ausbreiten können.
An der Oberfläche des Werkstückes wird ein Teil der Schallintensität reflektiert und trifft wieder auf den Prüfkopf. Die Dauer des abgestrahlten Sendeimpulses ist wesentlich kürzer als die Laufzeit des Signales vom Prüfkopf zur Oberfläche und zurück. Deshalb finden keine Überlagerungen zwischen abgestrahltem und empfangenem Signal statt.
Die eingedrungenen Schallwellen pflanzen sich in der gehärteten Randschicht relativ ungehindert fort, so dass aus diesem Bereich kaum Schallwellen zurückgestreut werden und auf den Prüfkopf gelangen.



Erst an der Grenze zum Grundwerkstoff steigt die Rückstreuung plötzlich stark an. Das Schallsignal wird zum Teil wieder in Richtung des Prüfkopfes reflektiert. An der Oberfläche werden die Transversalwellen wieder in Longitudinalwellen zurückverwandelt, die sich im Wasser ausbreiten und schließlich auf den Prüfkopf gelangen.
Von der Messelektronik wird das Empfangssignal des Prüfkopfes nach dem Sendeimpuls ständig aufgezeichnet. Der Signalverlauf enthält zunächst das starke Oberflächenecho, dann ein Minimum und anschließend einen mehr oder weniger steilen Anstieg der von der Reflexion am Übergang von der Randschicht zum Kernmaterial stammt.
Zur Messung der Einhärtetiefe muss der Abstand zwischen Oberfläche und Grenzschicht in Millimetern aus dem Signalverlauf bestimmt werden. Die Laufzeit des Schalls zwischen Oberfläche und Grenzschicht kann aus der Messkurve ermittelt werden. Hier wird die Zeit zwischen dem Maximum des Oberflächenechos und dem ersten Anstieg des Signals nach dem Minimum zur Auswertung verwendet. Mit der bekannten Schallgeschwindigkeit in Stahl kann damit die Laufstrecke in Millimetern berechnet werden.

Schichtdickenmessung mit dem Kalottenschleifverfahren
(Calotest)

Messprinzip:

Mit den Schichtdickenmessgeräten der kaloMAX-Familie wird die Schichtdicke per Kalottenschleifverfahren gemessen. Eine lose zwischen Antriebswelle und Probe aufliegende gehärtete Stahlkugel mit exakt definiertem Durchmesser wird durch die motorisch angetriebene Welle in Rotation versetzt (vgl. Prinzipskizze).
kaloMAX II

Abbildung 1a: kaloMAX II

Prinzip Kalottenschliff

Abbildung 1b: das Messprinzip Kalottenschliff

Die Kugel dient dabei als Träger für ein Abrasivmittel (Diamantsuspension, Diamantpaste o.ä.). Dadurch wird eine Vertiefung in die Probe geschliffen – die sogenannte Kalotte. Die Schleifdauer beträgt je nach Schichttyp (Dicke und Verschleißfestigkeit) wenige Sekunden bis einige Minuten. Wird das Schichtsystem der eingespannten Probe durchgeschliffen (Schlifftiefe > Schichtdicke), ist jede einzelne Schicht unter dem Mikroskop als konzentrischer Ring (ebene Probe) bzw. Ellipse (zylindrische Probe) zu erkennen.

Kalotte auf der Ebene

Abbildung 2a: Kalotte auf ebener Probe

Kalotte auf einer zylindrischen Probe

Abbildung 2b: Kalotte auf zylindrischer Probe

Mit dem Kalottenschleifverfahren lassen sich sowohl Einzel- als auch Mehrlagenschichten analysieren. Da der Durchmesser der gehärteten Stahlkugel sehr groß im Vergleich zu den Schichtdicken ist, wird das Schichtsystem unter einem sehr flachen Winkel angeschliffen, wodurch die Schicht gewissermaßen verbreitert wird (der Durchmesser der einzelnen Ringe ist typischerweise ca. um den Faktor 200 größer als die Schichtdicke).

Dies ist neben der enormen Zeitersparnis ein wesentlicher Vorteil des Kalottenschleifverfahrens z.B. gegenüber dem Querschliff, da die Genauigkeit der Messung durch die "Schichtverbreiterung" erheblich verbessert wird und die Auswertung mit einem normalen Auflichtmikroskop erfolgen kann.
Die Abbildungen 3a und 3b verdeutlichen das Prinzip des Verfahrens anhand eines Zweischichtsystems.

 Schichtdickenbestimmung auf ebener Probe

Abbildung 3a: Schichtdickenbestimmung auf ebener Probe


 Schichtdickenbestimmung auf einer zylindrischen Probe

Abbildung 3b: Schichtdickenbestimmung auf zylindrischer Probe

Da der Durchmesser der Stahlkugel sehr genau bekannt ist, können sämtliche Schichtdicken durch einen einfachen geometrischen Zusammenhang berechnet werden. Dazu müssen lediglich die Durchmesser (ebene Probe) bzw. die langen Diagonalen (zylindrische Probe) bestimmt werden. Anschließend können alle vorhandenen Schichtdicken entsprechend folgender Formel berechnet werden:
(Formel)

D: äußerer Durchmesser (eben) bzw. äußere Diagonale (zylindrisch)
d: innerer Durchmesser (eben) bzw. innere Diagonale (zylindrisch)
R: Kugelradius (i.d.R. 15 mm)
h: Schichtdicke
T: Schlifftiefe


Betrachtung der Messgenauigkeit des Kalottenschleifverfahrens

Grundvoraussetzung für eine bestmögliche Messgenauigkeit ist zunächst ein optimaler Rundlauf der Kugel während des Schleifprozesses. Höhenschlag oder seitliche Bewegungen der Kugel würden die Größe der Kalotte und somit auch die Messergebnisse verfälschen. Aus diesem Grund werden bei BAQ sog. Traktionsringe als Kontaktfläche für die Kugel verwendet. Diese werden im fertig montierten Zustand während der Rotation bei hoher Drehzahl mit einer speziellen Vorrichtung angeschliffen. Im Vergleich zu einer reinen Stahlwelle werden dadurch sowohl Höhenschlag als auch die seitliche Bewegung der Kugel auf ein Minimum reduziert, sodass dieser Einfluss auf das Messergebnis vernachlässigbar ist.

Des Weiteren hängt die Messgenauigkeit davon ab, mit welcher Genauigkeit die Durchmesser D und d bestimmt werden können (siehe Gleichung 1). Wie folgende Abbildung zeigt, hat vor allem die Oberflächenrauheit der Probe einen wesentlichen Einfluss darauf, mit welcher Genauigkeit D und d durch den Anwender festgelegt werden können.

Einfluss der Oberflächenrauheit

Abbildung 4: Einfluss der Oberflächenrauheit

Wie bei allen Messverfahren zur Schichtdickenmessung gilt auch für den Kalottenschliff: je geringer die Oberflächenrauheit der Probe, desto besser die Messgenauigkeit. Der Vorteil des Kalottenschleifverfahrens gegenüber anderen Verfahren besteht jedoch darin, dass der Anwender direkt sieht, wie das Messergebnis zustande kommt und dieses somit sehr gut beurteilen kann. Laut DIN EN ISO 26423 sollte die Oberflächenrauheit der Schicht und/oder des Substrates 20% der Schichtdicke nicht überschreiten.

Bei für diese Anwendung typischen Oberflächenrauheiten liegt die Genauigkeit bei der Festlegung der Durchmesser bei ca. ± 10 µm. Neben dem sorgsamen Ausmessen dieser Durchmesser spielt für die Messgenauigkeit auch die Schlifftiefe eine entscheidende Rolle. Dies wird anhand des folgenden Beispiels deutlich, für das folgende Annahmen getroffen werden:

Annahme 1: Die Durchmesser D und d können vom Anwender unabhängig von der Schlifftiefe mit einer Genauigkeit von ± 10 µm bestimmt werden.
Annahme 2: Die tatsächliche Schichtdicke beträgt 2,25 µm

Fall 1: Schlifftiefe zu groß
Die Kalotte wird so tief geschliffen, dass die entsprechenden Durchmesser D = 1400 µm bzw. d = 1300 µm betragen. Die tatsächliche Schichtdicke beträgt demnach:
(Formel)

(vgl. Annahme 2)

 zu grosse Schlifftiefe

Abbildung 5: zu große Schlifftiefe

Da die Durchmesser D bzw. d entsprechend Annahme 1 mit einer Genauigkeit von ± 10 µm bestimmt werden können, kann die durch den Anwender gemessene Schichtdicke jedoch innerhalb folgender Grenzen liegen:

Minimalwert:
(Formel)

Maximalwert:
(Formel 4)

Die Messgenauigkeit liegt in diesem Fall bei ± 0,45 µm

Fall 2: optimierte Schlifftiefe
Die Kalotte wird so tief geschliffen, dass der äußere Durchmesser D doppelt so groß wie der innere Durchmesser d ist. Bei einer Schichtdicke von 2,25 µm beträgt D = 600 µm bzw. d = 300 µm:
(Formel 5)

(vgl. Annahme 2)


optimierte Schlifftiefe

Abbildung 6: optimierte Schlifftiefe

Da die Durchmesser D bzw. d entsprechend Annahme 1 mit einer Genauigkeit von ± 10 µm bestimmt werden können, kann die durch den Anwender gemessene Schichtdicke theoretisch innerhalb folgender Grenzen liegen:

Minimalwert:
(Formel)

Maximalwert:
(Formel)


Die Messgenauigkeit liegt in diesem Fall bei ± 0,15 µm. Allein durch die Reduzierung der Schlifftiefe wurde die Messgenauigkeit um Faktor 3 verbessert.

Wir empfehlen daher, die Schlifftiefe stets so zu wählen, dass D ≈ 2 * d

Vorteile:

Sehr einfachkein Fachpersonal erforderlich
Schnellkeine Probenpräparation erforderlich;
Messergebnisse liegen nach wenigen Minuten vor
VielseitigMessung von Ein- und Mehrschichtsystemen
Hohe Genauigkeit"Schichtverbreiterung"
Werkstoffunabhängigprinzipiell für alle Substrat/Beschichtungs-
Kombinationen geeignet
Geometrieunabhängig  Ergebnis unabhängig von Probenform
(eben, zylindrisch, kugelförmig und ellipsoidal)
Nachvollziehbarkeitdurch direkte Messung sieht der Benutzer, wie das Ergebnis zustande kommt

Anwendungsgebiete:

  • PVD-Schichten
  • CVD-Schichten
  • Metallschichten
  • Galvanische Beschichtungen
  • Chemische Beschichtungen
  • Polymerschichten
  • Lackschichten (ausgehärtet)
  • Dekorschichten
  • Oxidschichten
  • Uvm.

Normen:

  • DIN EN ISO 26423
  • DIN EN ISO 1071-2 (zurückgezogen)
  • VDI 3198 (zurückgezogen)